Системы охлаждения для жестких дисков. Усовершенствование системы регулировки температуры жесткого диска. Увеличение площади поверхности теплообмена

Вы хотите продлить жизнь своему жесткому диску? Вы готовы потратить лишние 5-10 долларов на систему охлаждения для него? Давайте разберёмся, какие вообще варианты есть.

Типов охлаждения не так много:

  • В первую очередь это, конечно же, воздушное охлаждение . Подавляющее большинство подобных систем представляют собой пластиковую или металлическую рамку с вентилятором, которая прикручивается к жесткому диску снизу. А питаниена вентилятор берется при помощи спецпереходникаот свободного разъема блока питания. Также встречается вариант с установкой в гнездо 5,25 (это куда DVD-привод умещается) специального переходника для крепления винчестера, а вентилятор (или вентиляторы) ставится вместо заглушки на «фасаде»
  • Во вторую очередь, это пассивные системы охлаждения . То есть просто специально сконструированный радиатор, который крепится к жесткому диску, соприкасаясь с греющимися частями «винчестера» и отводит тепло в окружающую среду «самотёком», за счет большой площади теплоотдачи.
  • Ну и в третью очередь можно упомянуть о жидкостных системах охлаждения . Но это — малоинтересная экзотика, практическое применение которой практически отсутствует. К достоинствам жидкостных систем можно отнести очень хорошую теплоэффективность и равномерность отвода тепла (Исключение составляют моддеры, оверклокеры и пр. «самоделкины»)

Нуждается ли в охлаждении жесткий диск? Вряд ли на этот вопрос существует однозначный, единственно правильный ответ. Одни утверждают, что отсутствие дополнительного охлаждения HDD неминуемо приведет к его преждевременной кончине, другие говорят о том, что жесткие диски способны выдерживать намного более высокие температурные режимы и если бы вопрос об охлаждении был настолько критичен, производители сами устанавливали системы охлаждения в обязательном порядке. Однако все, наверное, сойдутся во мнении, что снижение температуры (до разумных пределов) как минимум не ухудшит характеристик того или иного компонента вычислительной системы, и жесткий диск не является исключением.

Сейчас на рынке присутствует огромное количество HDD-кулеров. Самый распространенный и недорогой вариант - установка обычного вентиляторного кулера. Лично для меня, как для ярого противника появления в компьютере дополнительного источника шума, "перспектива" установки подобного кулера являлась сугубо отрицательной. К тому же, не раз на своем веку приходилось наблюдать умершие накопители, чуть ли не со всех сторон обвешенные вентиляторами. Да и сам вентилятор, как и любое другое механическое устройство, имеет свойство ломаться, забиваться пылью, останавливаться, в конце концов, только ухудшая отвод тепла от HDD. Поэтому, однажды заприметив интересную систему охлаждения жесткого диска на основе тепловых трубок от компании Zalman, возникло желание заполучить такую "штуку".

И вот, Zalman ZM-2HC2 в руках, посмотрим, как он справляется со своими обязанностями.

Но обо всем по порядку. Итак, комплект поставки:

  • собственно, сама система охлаждения
  • инструкция
  • набор винтов для крепления

Тут стоит заметить, что кроме обычных винтиков-болтиков имеются еще и резиновые стойки, являющиеся связующим звеном между кулером и корпусом, железные части которых не являются единым целым, как может показаться на первый взгляд. Естественно, данное решение должно благотворно повлиять на вибро и шумоизоляцию. А учитывая отсутствие электрического контакта между корпусом HDD и "землей", производитель позаботился и об этом, укомплектовав устройство перемычкой, служащей для заземления HDD.

Кроме всего, в комплекте были обнаружены две наклейки с метками отверстий.

Сказать по правде, сразу было непонятно для чего они и куда их лепить. Но прочтение документации, хоть и простенькой, внесло ясность. Оказывается, кроме банальной установки сего монстра в 5,25" отсек, предусмотрена также установка на дно системного блока. И данные наклейки предназначены для облегчения этой процедуры.

Радиаторы выполнены из алюминия, тепловые трубки в количестве 11 штук - медные. Присмотревшись, можно понять технологию изготовления, а точнее, метод совмещения радиаторов и трубок в единое целое.

Для проведения тестирования, в качестве подопытного был выбран жесткий диск Seagate ST3320620AS - 320GB, 7200rpm, 16MB cache, SATA.

После установки системы охлаждения, внешний вид агрегата в сборе стал напоминать какой-то явно неотъемлемый блок межгалактического лайнера.

HDD устанавливался в корпус Foxconn 3GTS-002. Показатели температуры снимались при установке как в 3,5", так и в 5,25" отсеки с целью установить разность температур при нахождении HDD в различных частях корпуса.

Температура окружающей среды поддерживалась на уровне 20-21 градусов. Крышки корпуса были закрыты, никаких дополнительных вентиляторов в корпус не устанавливалось.

Для максимального разогрева использовались операции копирования больших объемов данных с одно раздела на другой, в частности:

  • копирование мелких файлов, общим объемом 24GB
  • копирование 35GB данных, каждый файл не менее 500MB
  • и напоследок, дабы заставить "шуршать" головки еще сильнее, две вышеуказанные операции запускались одновременно.

Показатели температуры головок снимались с помощью программы HDDLife . В принципе, можно использовать любую подобную программу (HDD Thermometer , HDD Temperature), поскольку все они получают данные, основываясь на информации S.M.A.R.T.

Кроме температуры головок, также производился замер температуры корпуса жесткого диска. Делалось это с помощью обычного тестера-мультиметра, имеющего выносной термодатчик. Конечно, полагаться на показания подобного прибора не имеет смысла, однако, в первую очередь нас интересовала разность температур, а не их точные показатели.

При установке в 5,25" отсек использовались две направляющие:

Первое, что было сделано - проверка разности температур в двух отсеках, без установки кулера. Упоминавшиеся файловые операции занимали по времени около полутора часов. В результате, максимальная достигнутая температура по показаниям S.M.A.R.T. составила 56°C, а температура корпуса HDD - 46°C. Причем показатели для разных отсеков были идентичны.

Пришло время и для Zalman ZM-2HC2. Кулер был прикреплен к жесткому диску и вся конструкция установлена в корпус. Тут возникла проблема. Дело в том, что в корпусе имеется система салазок и, кроме того, одна из сторон не имеет крепежных отверстий. Учитывая, что вся конструкция крепится к корпусу на гибких резиновых держателях, установить систему охлаждения в такой корпус без предварительной подготовки не представляется возможным.

Что же показали тесты. Как ни странно, но Zalman разочаровал. Температура не изменилась ни на градус и также составила 56 и 46°C для головок и корпуса HDD соответственно. Радиаторы и тепловые трубки нагревались примерно так же как и сам винчестер. Удалось заметить только то, что разогрев до максимальной температуры происходил дольше минут на 10-15. И еще один приятный момент - шум позиционирования головок на и так не особо шумном жестком диске стал практически не слышен.

Честно говоря, после таких результатов проводить какое-либо дальнейшее тестирование не было никакого желания. Но все же продолжим.

Следующей проверкой стала вибро и шумоизоляция. Для получения большего эффекта был взят другой накопитель, а именно ST360021A - 60GB, 7200rpm IDE (все дальнейшие тесты производились уже на этом диске), который будучи установленным в корпусе KME CX-5759, тарахтел как настоящий трактор.

Также были проведены и замеры температуры. Правда, теперь уже жесткий диск не разогревался по полной, а лишь работал в своем обычном, так сказать, "офисном" режиме. В 3х-дюймовом отсеке температура головок держалась на уровне 42°C. А вот после установки в 5,25"-отсек, температура выросла на 6°C. Теперь Zalman - все те же 48°C. Но с шумоизоляцией резиновые стойки справились на ура. Жесткий диск можно было услышать только в полнейшей тишине, и то прислушиваясь - определить чем занимается компьютер по шуму HDD как раньше, уже не получалось.

Но все-таки устройство называется Heatpipe HDD Cooler, соответственно, в первую очередь должно заниматься охлаждением. Что же не так?

Приняв во внимание то, что при использовании жесткого диска без кулера он имел прямой контакт с металлическими частями корпуса, и соответственно, рассеивал часть тепла через них, был проведен очередной опыт.

Жесткий диск лишался контакта с корпусом - он подвешивался в 5,25"-отсек на резинках, и таким образом висел в воздухе. И вот он! Маленький "триумф" Zalman - температура в таком режиме поднялась и держалась на отметке 50°C, иногда подпрыгивая до 51 (хотя при желании, эти 2-3 градуса вообще можно списать на погрешности). Также тяжело было не заметить, что HDD дошел до максимальной температуры за промежуток времени вдвое меньший. Это наводит на мысли, что с поглощением тепла у кулера Zalman как раз все в порядке, но проблемы с его рассеиванием в окружающую среду.

Для следующего эксперимента в корпус был установлен 12мм вентилятор производства все той же именитой компании, и запитан от 12В. Он занимался извлечением теплого воздуха из внутренностей ПК. Такой компьютер уже тяжело было назвать тихим.

После обеспечения циркуляции воздуха в корпусе компьютера, температуры снизились в среднем на 8°C. Отличие температур головок HDD при наличии и отсутствии системы охлаждения колебалось в диапазоне 1-2°C, что также нельзя назвать чем-то сверхординарным.

В конце концов, чтобы хоть как-то оправдать разработчиков этого, казалось бы, замечательного кулера, был проведен последний тест - установка накопителя на дно корпуса. Кстати, при такой установке, шум поглощался еще лучше.

Однако температурный режим остался неизменным - 42°C, как и при установке в 3,5"-отсек. Еще раз обращу внимание на то, что и в этом случае нет прямого контакта HDD и железных элементов корпуса.

После подключения к делу старого знакомого, 120мм вентилятора, температура снизилась, однако всего лишь на 4-5°C. Температура оказалась даже большей чем при установке в 3,5"-отсек (скорее всего, в данном случае это вызвано специфическим расположением вентилятора и самого диска).

После получения таких невразумительных результатов были предприняты попытки все же изменить положение дел. Использовался и накопитель другого производителя - Samsung SP0842N, тесты с которым не принесли ничего нового (кроме того, что средняя температура для этого накопителя составляла около 53°C), также устанавливался и обычный вентиляторный HDD-кулер Maxtron, с которым температура все же снизилась градусов на 8-10…

Заключение

Подводя итоги, хочется спросить у инженеров компании Zalman: почему на упаковке красуется слово Cooler? Тепловые трубки? Радиаторы? Все это, конечно же, очень хорошо, если бы результаты тестов не показали то, что они показали. Скорее это устройство стоило назвать виброшумопоглотитель. Судите сами. Что мы имеем? В самом начале, установленный накопитель в 3,5" отсек, где его температура в некоторых случаях может быть на 5-10°C ниже, чем в 5-дюймовом, а именно туда и прийдется перенести диск, при установке на него кулера.

Для ST360021A - это 42°C. Далее, при переносе этого накопителя в часть корпуса с более высокой температурой, его температура в свою очередь повышается до 50-51°C, а после установки системы охлаждения падает на 2-3 градуса. Итого получаем общее повышение температуры приблизительно на 6°C и полную тишину…

Из минусов также отметим слишком высокую стоимость для такого устройства - около 25-30$.

Из плюсов - интересный дизайн и внешний вид, а также отличную вибро и шумоизоляцию.

В конечном итоге, создалось такое впечатление, что вся эта алюминиево-медная конструкция служит для поддержания температуры накопителя на приемлемом уровне после лишения его контакта с корпусом компьютера, через который могла рассеиваться часть тепла, и использование его именно как кулера без дополнительного обдува не имеет смысла.

Охлаждение жесткого диска

С появлением жестких дисков со скоростями вращения магнитных дисков 7200 оборотов в минуту пользователи на практике смогли ощутить сильное тепловыделение во время их работы. В основном, источником нагрева служат не микросхемы на плате контроллера, а система позиционирования магнитных головок и шпиндельный двигатель, находящиеся в герметичном блоке. К повышенной температуре наиболее чувствительны магнитные диски, т.к. размагничивание и, следовательно, потеря информации при нагревании происходит быстрее. Выражается это в прямой зависимости количества часов наработки на отказ.

Рисунок 2.2 - Работа SMARTHDD

Датчик температуры не был включен в обязательный минимум атрибутов SMART, вследствие чего производители стали использовать различные номера атрибутов SMART, содержащих информацию о температуре, и системы отсчета температуры (шкала Цельсия или Фаренгейта). "SMARTHDD" умеет автоматически обнаруживать различия в реализации устройств и приводить к единому формату значения температуры.

Для лучшего охлаждения жесткий диск не должен быть прижат к корпусу сверху или снизу, т.к. это затрудняет циркуляцию воздуха, необходимую для эффективного охлаждения. По этой же причине не стоит располагать переплетения проводов вблизи накопителя. Снижению температуры способствует уменьшение уровня AAM и APM. С точки зрения надежности эксплуатировать жесткий диск при температуре выше 55°C не рекомендуется. При высокой температуре необходимо установить в компьютере дополнительный вентилятор, обеспечивающий активное (принудительное) охлаждение жесткого диска. Причина, по которой пользователь может отказаться от дополнительного охлаждения - шум от некачественного вентилятора или высокая стоимость качественной системы охлаждения, хотя обычно шум от дополнительного вентилятора, особенно на фоне других вентиляторов (процессор, видео, блок питания), практически не слышен.

Варианты охлаждения

Основным методом охлаждения современных ЖД 3.5? остаётся принудительный обдув с помощью вентилятора. Другие варианты теплоотвода - пассивные радиаторы, тепловые трубки, жидкостные системы и др. - не получили распространения, хотя ряд фирм (в частности, Zalman и Scythe) в разное время предлагал подобные решения. Они были бесшумны, долговечны, но отличались громоздкостью и высокой ценой, что предопределило узкую нишу на рынке (сборка особо тихих компьютеров и т.п.).

Подбор кулера для дисков имеет свою специфику. Прежде всего, общее тепловыделение ЖД и особенно его плотность сравнительно малы, поэтому достаточно легкого ветерка, чтобы снять перегрев. Вспомним также, что оптимальная температура диска под нагрузкой составляет 35-40? (примерно на 10? выше окружающей среды) и что все его поверхности следует охлаждать равномерно.

В подобных условиях лучшим выбором станет тихоходный крупногабаритный вентилятор, дующий в торец корзины с ЖД, но не касающийся её во избежание вибраций. Именно так устроен обдув корзины в современных качественных корпусах. Вентилятор крепится к вырезу передней панели, а декоративная крышка снабжена воздухозаборниками. Вытяжка через заднюю панель, которая часто встречается в корпусах среднего класса, также достаточно эффективна (конечно, при должной герметизации остальных мест).

Практика показала, что 120-мм вентилятор способен охлаждать до пяти ЖД, так что нужды обычных пользователей покрываются полностью. Для одного-двух дисков обдув даже избыточен, так что в целях снижения шума можно уменьшить скорость вращения до 600-1000 об./мин. Не лишним будет защититься от вездесущей пыли, поставив воздушный фильтр из тонкого поролона.

Значительная часть тепла ЖД может рассеиваться на корзине, которая служит пассивным радиатором. Здесь важна толщина металла и плотный равномерный прижим боковин (качественные корпуса имеют преимущество, также хорошо себя зарекомендовало крепление ЖД шестью винтами). При эффективном теплоотводе всё шасси во время работы ощутимо нагревается. Если же диск крепится на салазках или через амортизирующие элементы (силиконовые, хуже резиновые втулки), то этот путь охлаждения практически блокируется, и вся надежда остаётся на обдув.

Ситуация осложняется, когда штатное гнездо под вентилятор отсутствует. Можно заняться моддингом, сменить корпус на более подходящий или переставить ЖД в более прохладное место. Неплохо себя зарекомендовало размещение в пятидюймовом отсеке: его габариты позволяют установить вентилятор среднего размера (40-60 мм), а крепящие диск скобы не препятствуют обдуву и конвекции. Советуем использовать готовый монтажный комплект - в продаже есть как простые, так и улучшенные модели (с виброшумоизоляцией, пассивными радиаторами, индикацией температуры).

Выпускаются также недорогие (5-10$) кулеры, крепящиеся прямо на корпус ЖД. Следует предостеречь от их использования: мало того, что высокооборотный вентилятор, или даже два, обдувает практически одну только плату, покрывая её при этом пылью, растёт риск замыканий, так ещё диску передаются все вибрации крыльчатки. Особенно они возрастают через несколько месяцев эксплуатации, когда разбалтывается некачественный подшипник скольжения (других там и не ставят). В этом состоянии кулер приносит больше вреда, чем пользы и обязателен к замене.

В заключение напомним, что все обсуждение этого раздела касалось дисков для настольных компьютеров. Ноутбучные и серверные накопители имеют свою специфику, отражающуюся и на подходе к охлаждению.

Первые потребляют всего 0.4-0.9 Вт в покое и 2-3.2 Вт при активной работе, греются сравнительно слабо и не нуждаются в особых мерах. Максимум, что встречается в ноутбуках - П-образная пластина, привинченная к боковинам для лучшего теплоотвода. Для еще более миниатюрных дисков (типоразмеры 1.8?, 1.3?, 1? и даже 0.85?) нагрев и вовсе можно не учитывать: энергопотребление у них даже в пике не превышает одного ватта.

Вторые, напротив, очень горячи из-за высокооборотного шпинделя (чаще всего 15000 об./мин) и постоянной нагрузки, и для них обязателен активный обдув. Продуманная система охлаждения в серверах включает массивные салазки и корзины, раздельные воздуховоды, дублированные вентиляторы горячей замены и т.п. Благодаря этому серверные диски работают в стабильном тепловом режиме и служат заметно дольше бытовых сородичей.

Давно занимаюсь вопросом охлаждения HDD.
Первые два жёстких диска, которые были у меня - обходились без оного, были сами по себе не слишком горячими, да и я особо в железных внутренностях компьютера не разбирался. Потом начал железом интересоваться, собрал второй системник уже своими руками, озаботился нагревом HDD, ибо при долгой работе он становился довольно горячим, иногда почти обжигающим.
После перебора решений, представленых на рынке, была отброшена 5"-панель с мелким кулером спереди, перебраны многие варианты "набрюшных" кулеров.
На некоторое время я успокоился, и просто ставил на каждый хард по кулеру, запитанному от +5 вольт вместо +12 - так достигалась тихая работа при хорошей эффективности.
В последнее время основной мой компьютер становился всё мощнее и при этом всё тише. На фоне остальных охлаждающих элементов стали слышны втулки и движки вентиляторов на хардах. К тому же через мои руки уже прошло довольно большое количество таких кулеров, и часто даже на +5 вольтах они продолжали шуметь - то двигло обмотками тарахтит, то крыльчатка воздухом гудит... Лоторея, в общем. Плюс обнаружилась проблема загрязнения (правда, у кулеров в 5"-отсек с 40мм вентилятором на "морде" с этим ещё хуже) - кулер при своих небольших оборотах умудрялся довольно много забивать пыли под ножки микросхем, не думаю что хардам это приносило пользу.

Задумался, чем можно заменить эти "жужжалки"... На передней панели большинства АТХ-корпусов сейчас есть вентилятор, в большинстве полноразмерных АТХ - 120 миллиметровый. Зачем лишние кулеры на HDD, когда рядом уже есть кулер? Попробовал снять с хардов вентиляторы... "Банки" оставались довольно горячими, но руку держать можно было (мониторинг показывал 40...47 градусов при комнатной +25), но вот микросхемы на платах было крайне жалко. Сейчас обычно на платах самые греющиеся элементы - это процессор и драйвер двигателя/голов. Иногда ещё какой-нибудь стабилизатор питания. Для интереса померял температурные режимы микросхем... У типичного современного HDD в покое процессор нагревается до 40...55 градусов, т.е. руке уже достаточно горячо (у меня болевой порог примерно на 45 градусах), драйвер шпинделя ещё горячее - в покое обычно 45...60, а при случайном поиске температура быстро подпрыгивает выше и спокойно уходит за 70...80 градусов (мерял цифровым термометром). Термодатчик же обычно установлен на плате вне микросхем и/или в "банке" и его температура ниже.

Алюминиевый радиатор можно легко купить в магазине, если его размеры немного не подходят - легко обрезать лишнее. Термопрокладки в продаже не видел (не искал ), но их легко найти в сломаных CD/DVD-приводах (через них отводится тепло с микросхем драйверов двигателей на корпус устройства) или на видеокартах (между радиаторами и микросхемами памяти). Если толщины одной не хватает - можно набрать несколько.
Материалы довольно доступные.

Заехав как то раз за деталями в известный магазин радиодеталей вспомнил, что надо подобрать радиатор для этого проекта. Подобрал. Называется "HS 530-100". Рёбра невысокие, с дополнительными канавками для увеличения площади теплообмена, основание толще чем рёбра, на один HDD по ширине - выше крыши, на глаз прикинул в магазине - может и на два харда хватит... То что надо, купил. Дома примерил радиатор к хардам - на всех нашедшихся HDD он накрывал все "горячие точки", при этом был короче самого HDD. По ширине на два HDD хватало с большой натяжкой... Но всё же решил распилить его в расчёте на два харда.

Потом распотрошил несколько сломаных CD-ROM"ов, вытащил из них термопрокладки.

По случаю установки нового HDD, решил опробовать проект в деле. Харды были разложены на столе, с них скручены старые "набрюшные" кулеры. Рядом расположились радиаторы и термопрокладки с термопастой.
Радиатора, после распилки на два, хватало с трудом - края уже висели между серединами крепёжных отверстий, винты с трудом цеплялись за радиатор.

Как это было.
Берём хард, ищем "горячие" места. Можно прикинуть даже у выключенного HDD - это обычно микросхемы, они довольно крупные. Если плата перевёрнута (HDD WD или последние "плоские" Seagate), то по нагреву или нелакированным плошадкам - с другой стороны к таким площадкам "брюхом" припаиваются микросхемы для организации теплоотвода через плату. Между площадками несколько переходных отверстий для улучшения теплопроводности.

На найденые области кладём термопрокладки, прикидывая расстояние между элементом и поверхностью радиатора. Если толщины не хватает - делаем "бутерброд". Стараемся сделать так, чтобы сильного давления на плату не было, но и чтобы термопрокладки не болтались. Если термопрокладка липкая - кладём как есть, если гладкая - мажем соприкасаемые поверхности термопастой.

Кладём сверху радиатор, стараясь им не елозить, чтобы не свезти термопрокладки, и прикручиваем. Резьба у винтов та же, что и у тех, которыми харды обычно прикручиваются к корзине.

Проверяем на просвет, на месте ли термопрокладки.

Ваш компьютер стал часто "тормозить" и намертво "виснуть"? Вы слышите странные звуки, которые напоминают скрежет металла по стеклу и эти звуки раздаются из недр вашего системного блока?

Поздравляю: у вас начались проблемы с жестким диском!
Проблемы с жесткими дисками отнюдь редкость: здесь играют роль несколько факторов. Например, время, количество включений-отключений "жести", а также температурный баланс. Особенно важен последний фактор и о нем мы поговорим.

Итак!
Чем грозит перегрев жесткого диска? Как чем? Поломкой, естественно. Нагрев корпуса диска приводит к тому, что на поверхности вращающихся "болванок" начинают происходить некоторые негативные процессы, в частности - начинает "слетать" магнитная головка. Эта магнитная головка - очень чувствительное устройство, которое изначально очень тонко настроено: головка передает и принимает информацию (файлы), которую вы и записываете на вашу "жесть".

В итоге, если головка будет подвергаться ежедневному перегреву, ваш жесткий диск очень быстро выйдет из строя. И учтите: максимально допустимая температура жесткого диска +50*С (да и то, при этой температуре "жесть" уже начинает "выёживаться"). Вот так всё просто!
Теперь рассмотрим момент охлаждения "жести". Как её можно охладить? Естественно, с помощью кулера. Хотя, если у вас много времени и сил, то можете обмахивать жесткий диск веером!

А что: очень даже эффективно. Но если с головой у вас всё в порядке, то так делать не надо: могут не правильно понять. А как же надо? Необходимо механическое охлаждение, то есть - кулер. Но бывают "форс-мажорные" обстоятельства. Например, ваш системный блок просто не приспособлен для установки дополнительного кулера, который вы бы могли поставить для охлаждения жесткого диска. Также у вас может отсутствовать дополнительный слот (розетка) для подключения разъема дополнительного кулера. А самостоятельно пытаться что-то там припаять - довольно опасное занятие.

Так что же? Так и оставить жесткий диск в состоянии постоянного перегрева? Нет, не надо. Есть выход и он настолько прост, что вы очень удивит. Смотрите сюда: блок питания оснащен внутренним и довольно мощным кулером, верно? А почему бы вам не использовать мощь этого кулера в нужном направлении, то есть для охлаждения жесткого диска?! Делается это очень просто. Снимаете блок питания с его обычного места, ставите на пол, поворачиваете его "лицом" в сторону жесткого диска. (Внимание: открывать блок питания и снимать оттуда кулер не надо - всё должно остаться целостным.

Эта информация - для "полных чайников", которые, иногда, не "догоняют" суть совета и проявляют глупую инициативу). Естественно, что далеко не каждый кулер можно просто так взять и повернуть. Но если включите мозги, то у вас все получится. Главное: обратите внимание на провода, которые могут вам помешать в повороте и направлении кулера. На самом деле эти провода - не помеха: просто они могут быть запутанны и поэтому мешают вам развернуть блок питания. Распутайте провода и выберите угол поворота БП (БП - блок питания). Как установите - не забудьте, подключить кабеля питания.

Всё, запускайте систему. Теперь поставьте руку под жесткий диск: чувствуете воздушный поток? То-то!
Как видите, всё просто и не надо ничего покупать, или паять.
Понятное дело, что для богатых пользователей эта тема будет неинтересна. Зато для более скромных - это то, что надо!
Всего вам доброго и до новых встреч!

Поделитесь с друзьями или сохраните для себя:

Загрузка...