Е (функции Е). Е (функции Е) Возвращает значение истина, если

y(x) = e x , производная которой равна самой функции.

Экспоненту обозначают так , или .

Число e

Основанием степени экспоненты является число e . Это иррациональное число. Оно примерно равно
е ≈ 2,718281828459045...

Число e определяется через предел последовательности. Это, так называемый, второй замечательный предел :
.

Также число e можно представить в виде ряда:
.

График экспоненты

График экспоненты, y = e x .

На графике представлена экспонента, е в степени х .
y(x) = е х
На графике видно, что экспонента монотонно возрастает.

Формулы

Основные формулы такие же, как и для показательной функции с основанием степени е .

;
;
;

Выражение показательной функции с произвольным основанием степени a через экспоненту:
.

Частные значения

Пусть y(x) = e x . Тогда
.

Свойства экспоненты

Экспонента обладает свойствами показательной функции с основанием степени е > 1 .

Область определения, множество значений

Экспонента y(x) = e x определена для всех x .
Ее область определения:
- ∞ < x + ∞ .
Ее множество значений:
0 < y < + ∞ .

Экстремумы, возрастание, убывание

Экспонента является монотонно возрастающей функцией, поэтому экстремумов не имеет. Основные ее свойства представлены в таблице.

Обратная функция

Обратной для экспоненты является натуральный логарифм .
;
.

Производная экспоненты

Производная е в степени х равна е в степени х :
.
Производная n-го порядка:
.
Вывод формул > > >

Интеграл

Комплексные числа

Действия с комплексными числами осуществляются при помощи формулы Эйлера :
,
где есть мнимая единица:
.

Выражения через гиперболические функции

; ;
.

Выражения через тригонометрические функции

; ;
;
.

Разложение в степенной ряд

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Прежде чем познакомится с понятием натурального логарифма, рассмотрим понятие постоянного числа $е$.

Число $e$

Определение 1

Число $e$ – это математическое постоянное, которое является трансцендентным числом и равно $e \approx 2,718281828459045\ldots$.

Определение 2

Трансцендентным называется число, которое не является корнем полинома с целыми коэффициентами.

Замечание 1

Последней формулой описывается второй замечательный предел .

Число е также носит название числа Эйлера , а иногда и числа Непера .

Замечание 2

Чтобы запомнить первые знаки числа $е$ зачастую пользуются следующим выражением: «$2$, $7$, дважды Лев Толстой» . Конечно же, для того, чтобы можно было его использовать, необходимо помнить, что Лев Толстой родился в $1828$ г. Именно эти числа дважды повторяются в значении числа $е$ после целой части $2$ и десятичной $7$.

Рассмотрение понятия числа $е$ при изучении натурального логарифма мы начали именно потому, что оно стоит в основании логарифма $\log_{e}⁡a$, который принято называть натуральным и записывать в виде $\ln ⁡a$.

Натуральный логарифм

Часто при расчетах используют логарифмы, в основании которых стоит число $е$.

Определение 4

Логарифм с основанием $е$ называют натуральным .

Т.е. натуральный логарифм можно обозначить как $\log_{e}⁡a$, но в математике принято использовать обозначение $\ln ⁡a$.

Свойства натурального логарифма

    Т.к. логарифм по любому основанию от единицы равен $0$, то и натуральный логарифм единицы равен $0$:

    Натуральный логарифм от числа $е$ равен единице:

    Натуральный логарифм произведения двух чисел равен сумме натуральных логарифмов от этих чисел:

    $\ln ⁡(ab)=\ln ⁡a+\ln ⁡b$.

    Натуральный логарифм частного двух чисел равен разнице натуральных логарифмов этих чисел:

    $\ln⁡\frac{a}{b}=\ln ⁡a-\ln⁡ b$.

    Натуральный логарифм степени числа может быть представлен в виде произведения показателя степени на натуральный логарифм подлогарифмического числа:

    $\ln⁡ a^s=s \cdot \ln⁡ a$.

Пример 1

Упростить выражение $\frac{2 \ln ⁡4e-\ln ⁡16}{\ln ⁡5e-\frac{1}{2} \ln ⁡25}$.

Решение .

Применим к первому логарифму в числителе и в знаменателе свойство логарифма произведения, а ко второму логарифму числителя и знаменателя – свойство логарифма степени:

$\frac{2 \ln ⁡4e-\ln⁡16}{\ln ⁡5e-\frac{1}{2} \ln ⁡25}=\frac{2(\ln ⁡4+\ln ⁡e)-\ln⁡ 4^2}{\ln ⁡5+\ln ⁡e-\frac{1}{2} \ln⁡ 5^2}=$

откроем скобки и приведем подобные слагаемые, а также применим свойство $\ln ⁡e=1$:

$=\frac{2 \ln ⁡4+2-2 \ln ⁡4}{\ln ⁡5+1-\frac{1}{2} \cdot 2 \ln ⁡5}=\frac{2}{\ln ⁡5+1-\ln ⁡5}=2$.

Ответ : $\frac{2 \ln ⁡4e-\ln ⁡16}{\ln ⁡5e-\frac{1}{2} \ln ⁡25}=2$.

Пример 2

Найти значение выражения $\ln⁡ 2e^2+\ln \frac{1}{2e}$.

Решение .

Применим формулу суммы логарифмов:

$\ln 2e^2+\ln \frac{1}{2e}=\ln 2e^2 \cdot \frac{1}{2e}=\ln ⁡e=1$.

Ответ : $\ln 2e^2+\ln \frac{1}{2e}=1$.

Пример 3

Вычислить значение логарифмического выражения $2 \lg ⁡0,1+3 \ln⁡ e^5$.

Решение .

Применим свойство логарифма степени:

$2 \lg ⁡0,1+3 \ln e^5=2 \lg 10^{-1}+3 \cdot 5 \ln ⁡e=-2 \lg ⁡10+15 \ln ⁡e=-2+15=13$.

Ответ : $2 \lg ⁡0,1+3 \ln e^5=13$.

Пример 4

Упростить логарифмическое выражение $\ln \frac{1}{8}-3 \ln ⁡4$.

$3 \ln \frac{9}{e^2}-2 \ln ⁡27=3 \ln (\frac{3}{e})^2-2 \ln 3^3=3 \cdot 2 \ln \frac{3}{e}-2 \cdot 3 \ln ⁡3=6 \ln \frac{3}{e}-6 \ln ⁡3=$

применим к первому логарифму свойство логарифма частного:

$=6(\ln ⁡3-\ln ⁡e)-6 \ln⁡ 3=$

откроем скобки и приведем подобные слагаемые:

$=6 \ln ⁡3-6 \ln ⁡e-6 \ln ⁡3=-6$.

Ответ : $3 \ln \frac{9}{e^2}-2 \ln ⁡27=-6$.

Функция-это модель. Определим X, как множество значений независимой переменной // независимая -значит любая.

Функция это правило, с помощью которого по каждому значению независимой переменной из множества X можно найти единственное значение зависимой переменной. // т.е. для каждого х есть один у.

Из определения следует, что существует два понятия- независимая переменная (которую обозначаем х и она может принимать любые значения) и зависимая переменная (которую обозначаем y или f(х) и она высчитывается из функции, когда мы подставляем х).

НАПРИМЕР у=5+х

1. Независимая -это х, значит берем любое значение, пусть х=3

2. а теперь вычисляем у, значит у=5+х=5+3=8. (у зависима от х, потому что какой х подставим, такой у и получим)

Говорят, что переменная y функционально зависит от переменной x и обозначается это следующим образом: y = f (x).

НАПРИМЕР.

1.у=1/х. (наз.гипербола)

2. у=х^2. (наз. парабола)

3.у=3х+7. (наз. прямая)

4. у= √ х. (наз. ветвь параболы)

Независимая переменная (кот. мы обозначаем х) имеет название аргумент функции.

Область определения функции

Множество всех значений, которые принимает аргумент функции, называется областью определения функции и обозначается D (f) или D (y).

Рассмотрим D (у) для 1.,2.,3.,4.

1. D (у)= (∞; 0) и (0;+∞) //всё множество действительных чисел, кроме нуля.

2. D (у)= (∞; +∞)//всё мн-во действит.чисел

3. D (у)= (∞; +∞)//всё мн-во действит.чисел

4. D (у)= {n!}}}} (это следует из формулы Муавра - Стирлинга).

  • Как сумма ряда : e = ∑ n = 0 ∞ 1 n ! {\displaystyle e=\sum _{n=0}^{\infty }{\frac {1}{n!}}} или 1 e = ∑ n = 2 ∞ (− 1) n n ! {\displaystyle {\frac {1}{e}}=\sum _{n=2}^{\infty }{\frac {(-1)^{n}}{n!}}} .
  • Как единственное число a {\displaystyle a} , для которого выполняется ∫ 1 a d x x = 1. {\displaystyle \int \limits _{1}^{a}{\frac {dx}{x}}=1.}
  • Как единственное положительное число a {\displaystyle a} , для которого верно d d x a x = a x . {\displaystyle {\frac {d}{dx}}a^{x}=a^{x}.}
  • Свойства

    • Число e {\displaystyle e} трансцендентно . Впервые это было доказано в 1873 году Шарлем Эрмитом . Трансцендентность числа e {\displaystyle e} следует из теоремы Линдемана .
    • Предполагается, что e {\displaystyle e} - нормальное число , то есть частота появления разных цифр в его записи одинакова. В настоящее время (2017) эта гипотеза не доказана.
    • Число e является вычислимым (а значит, и арифметическим) числом.
    • e i x = cos ⁡ (x) + i ⋅ sin ⁡ (x) {\displaystyle e^{ix}=\cos(x)+i\cdot \sin(x)} , см. формула Эйлера , в частности
    • Формула, связывающая числа e {\displaystyle e} и π {\displaystyle \pi } , т. н. интеграл Пуассона или интеграл Гаусса ∫ − ∞ ∞ e − x 2 d x = π {\displaystyle \int \limits _{-\infty }^{\infty }\ e^{-x^{2}}{dx}={\sqrt {\pi }}}
    • Для любого комплексного числа z верны следующие равенства: e z = ∑ n = 0 ∞ 1 n ! z n = lim n → ∞ (1 + z n) n . {\displaystyle e^{z}=\sum _{n=0}^{\infty }{\frac {1}{n!}}z^{n}=\lim _{n\to \infty }\left(1+{\frac {z}{n}}\right)^{n}.}
    • Число e разлагается в бесконечную цепную дробь следующим образом (простое доказательство этого разложения, связанное с аппроксимациями Паде, приведено в ): e = [ 2 ; 1 , 2 , 1 , 1 , 4 , 1 , 1 , 6 , 1 , 1 , 8 , 1 , 1 , 10 , 1 , … ] {\displaystyle e=} , то есть e = 2 + 1 1 + 1 2 + 1 1 + 1 1 + 1 4 + 1 1 + 1 1 + 1 6 + 1 1 + 1 1 + 1 8 + 1 1 + 1 1 + 1 10 + 1 1 + … {\displaystyle e=2+{\cfrac {1}{1+{\cfrac {1}{2+{\cfrac {1}{1+{\cfrac {1}{1+{\cfrac {1}{4+{\cfrac {1}{1+{\cfrac {1}{1+{\cfrac {1}{6+{\cfrac {1}{1+{\cfrac {1}{1+{\cfrac {1}{8+{\cfrac {1}{1+{\cfrac {1}{1+{\cfrac {1}{10+{\cfrac {1}{1+\ldots }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
    • Или эквивалентным ему: e = 2 + 1 1 + 1 2 + 2 3 + 3 4 + 4 … {\displaystyle e=2+{\cfrac {1}{1+{\cfrac {1}{2+{\cfrac {2}{3+{\cfrac {3}{4+{\cfrac {4}{\ldots }}}}}}}}}}}
    • Для быстрого вычисления большого числа знаков удобнее использовать другое разложение: e + 1 e − 1 = 2 + 1 6 + 1 10 + 1 14 + 1 … {\displaystyle {\frac {e+1}{e-1}}=2+{\cfrac {1}{6+{\cfrac {1}{10+{\cfrac {1}{14+{\cfrac {1}{\ldots }}}}}}}}}
    • e = lim n → ∞ n n ! n . {\displaystyle e=\lim _{n\to \infty }{\frac {n}{\sqrt[{n}]{n!}}}.}
    • Представление Каталана : e = 2 ⋅ 4 3 ⋅ 6 ⋅ 8 5 ⋅ 7 4 ⋅ 10 ⋅ 12 ⋅ 14 ⋅ 16 9 ⋅ 11 ⋅ 13 ⋅ 15 8 ⋅ 18 ⋅ 20 ⋅ 22 ⋅ 24 ⋅ 26 ⋅ 28 ⋅ 30 ⋅ 32 17 ⋅ 19 ⋅ 21 ⋅ 23 ⋅ 25 ⋅ 27 ⋅ 29 ⋅ 31 16 ⋯ {\displaystyle e=2\cdot {\sqrt {\frac {4}{3}}}\cdot {\sqrt[{4}]{\frac {6\cdot 8}{5\cdot 7}}}\cdot {\sqrt[{8}]{\frac {10\cdot 12\cdot 14\cdot 16}{9\cdot 11\cdot 13\cdot 15}}}\cdot {\sqrt[{16}]{\frac {18\cdot 20\cdot 22\cdot 24\cdot 26\cdot 28\cdot 30\cdot 32}{17\cdot 19\cdot 21\cdot 23\cdot 25\cdot 27\cdot 29\cdot 31}}}\cdots }
    • Представление через произведение : e = 3 ⋅ ∏ k = 1 ∞ (2 k + 3) k + 1 2 (2 k − 1) k − 1 2 (2 k + 1) 2 k {\displaystyle e={\sqrt {3}}\cdot \prod \limits _{k=1}^{\infty }{\frac {\left(2k+3\right)^{k+{\frac {1}{2}}}\left(2k-1\right)^{k-{\frac {1}{2}}}}{\left(2k+1\right)^{2k}}}}
    • Через числа Белла

    E = 1 B n ∑ k = 0 ∞ k n k ! {\displaystyle e={\frac {1}{B_{n}}}\sum _{k=0}^{\infty }{\frac {k^{n}}{k!}}}

    История

    Данное число иногда называют неперовым в честь шотландского учёного Непера , автора работы «Описание удивительной таблицы логарифмов» (1614 год). Однако это название не совсем корректно, так как у него логарифм числа x {\displaystyle x} был равен 10 7 ⋅ log 1 / e ⁡ (x 10 7) {\displaystyle 10^{7}\cdot \,\log _{1/e}\left({\frac {x}{10^{7}}}\right)} .

    Впервые константа негласно присутствует в приложении к переводу на английский язык вышеупомянутой работы Непера, опубликованному в 1618 году . Негласно, потому что там содержится только таблица натуральных логарифмов, определённых из кинематических соображений, сама же константа не присутствует.

    Саму же константу впервые вычислил швейцарский математик Якоб Бернулли в ходе решения задачи о предельной величине процентного дохода . Он обнаружил, что если исходная сумма $ 1 {\displaystyle \$1} и начисляется годовых один раз в конце года, то итоговая сумма будет $ 2 {\displaystyle \$2} . Но если те же самые проценты начислять два раза в год, то $ 1 {\displaystyle \$1} умножается на 1 , 5 {\displaystyle 1{,}5} дважды, получая $ 1 , 00 ⋅ 1 , 5 2 = $ 2 , 25 {\displaystyle \$1{,}00\cdot 1{,}5^{2}=\$2{,}25} . Начисления процентов раз в квартал приводит к $ 1 , 00 ⋅ 1 , 25 4 = $ 2,441 40625 {\displaystyle \$1{,}00\cdot 1{,}25^{4}=\$2{,}44140625} , и так далее. Бернулли показал, что если частоту начисления процентов бесконечно увеличивать, то процентный доход в случае сложного процента имеет предел : lim n → ∞ (1 + 1 n) n . {\displaystyle \lim _{n\to \infty }\left(1+{\frac {1}{n}}\right)^{n}.} и этот предел равен числу e (≈ 2,718 28) {\displaystyle e~(\approx 2{,}71828)} .

    $ 1 , 00 ⋅ (1 + 1 12) 12 = $ 2,613 035... {\displaystyle \$1{,}00\cdot \left(1+{\frac {1}{12}}\right)^{12}=\$2{,}613035...}

    $ 1 , 00 ⋅ (1 + 1 365) 365 = $ 2,714 568... {\displaystyle \$1{,}00\cdot \left(1+{\frac {1}{365}}\right)^{365}=\$2{,}714568...}

    Таким образом, константа e {\displaystyle e} означает максимально возможную годовую прибыль при 100 % {\displaystyle 100\%} годовых и максимальной частоте капитализации процентов .

    Первое известное использование этой константы, где она обозначалась буквой b {\displaystyle b} , встречается в письмах Лейбница Гюйгенсу , -1691 годы .

    Букву e {\displaystyle e} начал использовать Эйлер в 1727 году , впервые она встречается в письме Эйлера немецкому математику Гольдбаху от 25 ноября 1731 года , а первой публикацией с этой буквой была его работа «Механика, или Наука о движении, изложенная аналитически», 1736 год . Соответственно, e {\displaystyle e} обычно называют числом Эйлера . Хотя впоследствии некоторые учёные использовали букву c {\displaystyle c} , буква e {\displaystyle e} применялась чаще и в наши дни является стандартным обозначением.

    Поделитесь с друзьями или сохраните для себя:

    Загрузка...