Суперпозиция функций алгебры логики. «Учебник по дискретной математике. Суперпозиция функций. Замыкание набора функции.Замкнутые классы функций. Полные наборы. Базисы Найти суперпозицию функции

Пусть есть 2 функции:

: A→B и g: D→F

Пусть область определения D функции g входит в область значений функции f (DB). Тогда можно определить новую функцию – суперпозицию (композицию, сложную функцию) функций f и g: z = g ((x )).

Примеры. f(x)=x 2 , g(x)=e x . f:R→R, g:R→R.

(g(x))=e 2x , g((x))=.

Определение

Пусть идве функции. Тогда их композицией называется функция, определённая равенством:

Свойства композиции

    Композиция ассоциативна:

    Если F = id X - тождественное отображение на X , то есть

.

    Если G = id Y - тождественное отображение на Y , то есть

.

Дополнительные свойства

Счетные и несчетные множества.

Два конечных множества состоят из равного числа элементов, если между этими множествами можно установить взаимно однозначное соответствие. Число элементов конечного множества – мощность множества.

Для бесконечного множества можно установить взаимно однозначное соответствие между всем множеством и его частью.

Самым простым из бесконечных множеств является множество N.

Определение. Множества А и В называются эквивалентными (АВ), если между ними можно установить взаимно однозначное соответствие.

Если эквивалентны два конечных множества, то они состоят из одного и того же числа элементов.

Если же эквивалентные между собой множества А и В произвольны, то говорят, что А и В имеют одинаковую мощность . (мощность = эквивалентность).

Для конечных множеств понятие мощности совпадает с понятием числа элементов множества.

Определение. Множество называется счетным , если можно установить взаимно однозначное соответствие между ним и множеством натуральных чисел. (Т.е. счетное множество – бесконечное, эквивалентное множеству N).

(Т.е. все элементы счетного множества можно занумеровать).

Свойства отношения равномощности.

1) АА- рефлексивность.

2) АВ, то ВА – симметричность.

3) АВ и ВС, то АС – транзитивность.

Примеры.

1) n→2n, 2,4,6,… - четные натуральные

2) n→2n-1, 1,3,5,…- нечетные натуральные.

Свойства счетных множеств .

1. Бесконечные подмножества счетного множества счетны.

Доказательство . Т.к. А – счетно, то А: х 1 ,х 2 ,… - отобразили А в N.

ВА, В: →1,→2,… - поставили каждому элементу В в соответствиенатуральное число, т.е. отобразили В в N. Следовательно В – счетно. Ч.т.д.

2. Объединение конечной (счетной) системы счетных множеств – счетно.

Примеры .

1. Множество целых чисел Z – счетно, т.к. множество Z можно представить как объединение счетных множеств А и В, где А: 0,1,2,.. и В: -1,-2,-3,…

2. Множество упорядоченных пар {(m,n): m,nZ} (т.е. (1,3)≠(3,1)).

3 (!) . Множество рациональных чисел – счетно.

Q=. Можно установить взаимно однозначное соответствие между множеством несократимых дробейQ и множеством упорядоченных пар:

Т.о. множество Q равномощно множеству {(p,q)}{(m,n)}.

Множество {(m,n)} – множество всех упорядоченных пар – счетно. Следовательно и множество {(p,q)} – счетно, а значит и Q – счетно.

Определение. Иррациональным числом называется произвольная бесконечная десятичная непериодическая дробь, т.е.  0 , 1  2 …

Множество всех десятичных дробей образуют множество вещественных (действительных) чисел.

Множество иррациональных чисел – несчетно.

Теорема 1 . Множество вещественных чисел из промежутка (0,1) – несчетное множество.

Доказательство . Допустим противное, т.е. что все числа интервала (0,1) можно занумеровать. Тогда, записывая эти числа в виде бесконечных десятичных дробей, получим последовательность:

х 1 =0,а 11 а 12 …a 1n …

x 2 =0,a 21 a 22 …a 2n …

…………………..

x n =0,a n 1 a n 2 …a nn …

……………………

Рассмотрим теперь вещественное число х=0,b 1 b 2 …b n …, где b 1 - любая цифра, отличная от а 11 , (0 и 9), b 2 - любая цифра, отличная от а 22 , (0 и 9),…, b n - любая цифра, отличная от a nn , (0 и 9).

Т.о. х(0,1), но хx i (i=1,…,n) т.к. в противном случае, b i =a ii . Пришли к противоречию. Ч.т.д.

Теорема 2. Любой промежуток вещественной оси является несчетным множеством.

Теорема 3. Множество действительных (вещественных) чисел – несчетно.

Про всякое множество, равномощное множеству вещественных чисел говорят, что оно мощности континуума (лат. continuum – непрерывное, сплошное).

Пример . Покажем, что интервал обладает мощностью континуума.

Функция у=tg x: →R отображает интервал на всю числовую прямую (график).

Определение функции, области задания и множества значений. Определения, связанные с обозначением функции. Определения сложной, числовой, действительной, монотонной и многозначной функции. Определения максимума, минимума, верхней и нижней граней для ограниченных функций.

Содержание

Функцией y = f(x) называется закон (правило, отображение), согласно которому, каждому элементу x множества X ставится в соответствие один и только один элемент y множества Y .

Множество X называется областью определения функции .
Множество элементов y ∈ Y , которые имеют прообразы во множестве X , называется множеством значений функции (или областью значений ).

Область определения функции иногда называют множеством определения или множеством задания функции.

Элемент x ∈ X называют аргументом функции или независимой переменной .
Элемент y ∈ Y называют значением функции или зависимой переменной .

Само отображение f называется характеристикой функции .

Характеристика f обладает тем свойством, что если два элемента и из множества определения имеют равные значения: , то .

Символ, обозначающий характеристику, может совпадать с символом элемента значения функции. То есть можно записать так: . При этом стоит помнить, что y - это элемент из множества значений функции, а - это правило, по которому для элемента x ставится в соответствие элемент y .

Сам процесс вычисления функции состоит из трех шагов. На первом шаге мы выбираем элемент x из множества X . Далее, с помощью правила , элементу x ставится в соответствие элемент множества Y . На третьем шаге этот элемент присваивается переменной y .

Частным значением функции называют значение функции при выбранном (частном) значении ее аргумента.

Графиком функции f называется множество пар .

Сложные функции

Определение
Пусть заданы функции и . Причем область определения функции f содержит множество значений функции g . Тогда каждому элементу t из области определения функции g соответствует элемент x , а этому x соответствует y . Такое соответствие называют сложной функцией : .

Сложную функцию также называют композицией или суперпозицией функций и иногда обозначают так: .

В математическом анализе принято считать, что если характеристика функции обозначена одной буквой или символом, то она задает одно и то же соответствие. Однако, в других дисциплинах, встречается и другой способ обозначений, согласно которому отображения с одной характеристикой, но разными аргументами, считаются различными. То есть отображения и считаются различными. Приведем пример из физики. Допустим мы рассматриваем зависимость импульса от координаты . И пусть мы имеем зависимость координаты от времени . Тогда зависимость импульса от времени является сложной функцией . Но ее, для краткости, обозначают так: . При таком подходе и - это различные функции. При одинаковых значениях аргументов они могут давать различные значения. В математике такое обозначение не принято. Если требуется сокращение, то следует ввести новую характеристику. Например . Тогда явно видно, что и - это разные функции.

Действительные функции

Область определения функции и множество ее значений могут быть любыми множествами.
Например, числовые последовательности - это функции, областью определения которых является множество натуральных чисел, а множеством значений - вещественные или комплексные числа.
Векторное произведение тоже функция, поскольку для двух векторов и имеется только одно значение вектора . Здесь областью определения является множество всех возможных пар векторов . Множеством значений является множество всех векторов.
Логическое выражение является функцией. Ее область определения - это множество действительных чисел (или любое множество, в котором определена операция сравнения с элементом “0”). Множество значений состоит из двух элементов - “истина” и “ложь”.

В математическом анализе большую роль играют числовые функции.

Числовая функция - это функция, значениями которой являются действительные или комплексные числа.

Действительная или вещественная функция - это функция, значениями которой являются действительные числа.

Максимум и минимум

Действительные числа имеют операцию сравнения. Поэтому множество значений действительной функции может быть ограниченным и иметь наибольшее и наименьшее значения.

Действительная функция называется ограниченной сверху (снизу) , если существует такое число M , что для всех выполняется неравенство:
.

Числовая функция называется ограниченной , если существует такое число M , что для всех :
.

Максимумом M (минимумом m ) функции f , на некотором множестве X называют значение функции при некотором значении ее аргумента , при котором для всех ,
.

Верхней гранью или точной верхней границей действительной, ограниченной сверху функции называют наименьшее из чисел, ограничивающее область ее значений сверху. То есть это такое число s , для которого для всех и для любого , найдется такой аргумент , значение функции от которого превосходит s′ : .
Верхняя грань функции может обозначаться так:
.

Верхней гранью неограниченной сверху функции

Нижней гранью или точной нижней границей действительной, ограниченной снизу функции называют наибольшее из чисел, ограничивающее область ее значений снизу. То есть это такое число i , для которого для всех и для любого , найдется такой аргумент , значение функции от которого меньше чем i′ : .
Нижняя грань функции может обозначаться так:
.

Нижней гранью неограниченной снизу функции является бесконечно удаленная точка .

Таким образом, любая действительная функция, на не пустом множестве X , имеет верхнюю и нижнюю грани. Но не всякая функция имеет максимум и минимум.

В качестве примера рассмотрим функцию , заданную на открытом интервале .
Она ограничена, на этом интервале, сверху значением 1 и снизу - значением 0 :
для всех .
Эта функция имеет верхнюю и нижнюю грани:
.
Но она не имеет максимума и минимума.

Если мы рассмотрим туже функцию на отрезке , то она на этом множестве ограничена сверху и снизу, имеет верхнюю и нижнюю грани и имеет максимум и минимум:
для всех ;
;
.

Монотонные функции

Определения возрастающей и убывающей функций
Пусть функция определена на некотором множестве действительных чисел X . Функция называется строго возрастающей (строго убывающей)
.
Функция называется неубывающей (невозрастающей) , если для всех таких что выполняется неравенство:
.

Определение монотонной функции
Функция называется монотонной , если она неубывающая или невозрастающая.

Многозначные функции

Пример многозначной функции. Различными цветами обозначены ее ветви. Каждая ветвь является функцией.

Как следует из определения функции, каждому элементу x из области определения, ставится в соответствие только один элемент из множества значений. Но существуют такие отображения, в которых элемент x имеет несколько или бесконечное число образов.

В качестве примера рассмотрим функцию арксинус : . Она является обратной к функции синус и определяется из уравнения:
(1) .
При заданном значении независимой переменной x , принадлежащему интервалу , этому уравнению удовлетворяет бесконечно много значений y (см. рисунок).

Наложим на решения уравнения (1) ограничение. Пусть
(2) .
При таком условии, заданному значению , соответствует только одно решение уравнения (1). То есть соответствие, определяемое уравнением (1) при условии (2) является функцией.

Вместо условия (2) можно наложить любое другое условие вида:
(2.n) ,
где n - целое. В результате, для каждого значения n , мы получим свою функцию, отличную от других. Множество подобных функций является многозначной функцией . А функция, определяемая из (1) при условии (2.n) является ветвью многозначной функции .

Это совокупность функций, определенных на некотором множестве.

Ветвь многозначной функции - это одна из функций, входящих в многозначную функцию.

Однозначная функция - это функция.

Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

- (позднелат. superpositio, – наложение, от лат. superpositus – положенный наверх) (композиция) – операция логико математич. исчислений, заключающаяся в получении из к. л. данных функций f и g данного исчисления новой функции g (f) (выражение g… … Философская энциклопедия

Термин суперпозиция (наложение) может относиться к следующим понятиям: Суперпозиция композиция функций (сложная функция) Принцип суперпозиции принцип в физике и математике, описывающий наложение процессов (например, волн) и, как следствие,… … Википедия

Композиция функций, составление из двух функций сложной функции … Математическая энциклопедия

У этого термина существуют и другие значения, см. Суперпозиция. Квантовая механика … Википедия

В данной статье или разделе имеется список источников или внешних ссылок, но источники отдельных утверждений остаются неясными из за отсутствия сносок … Википедия

В теории дискретных функциональных систем булевой функцией называют функцию типа, где булево множество, а n неотрицательное целое число, которое называют арностью или местностью функции. Элементы 1 (единица) и 0 (ноль) стандартно интерпретируют… … Википедия

Один из важнейших для оснований математики и математич. логики классов понятий, служащих уточнениями содержат. понятий эффективно вычислимой арифметической функции и эффективно разрешимого арифметического предиката, а в конечном счете, – и… … Философская энциклопедия

Функция, вычисление значений к рой может быть проведено с помощью заранее заданной эффективной процедуры, или алгоритма. Характерная черта вычислительных процессов вычисление искомых величин задач происходит последовательно из данных исходных… … Математическая энциклопедия

Необходимо перенести содержимое этой статьи в статью «Дифференцирование сложной функции». Вы можете помочь проекту, объединив статьи. В случае необходимости обсуждения целесообразности объединения, замените этот шаблон на шаблон {{к объединению}} … Википедия

- (лат. compositio составление, связывание, сложение, соединение): В Викисловаре есть статья «композиция» Искусство Композиция (изобразительное искусство) организующий компонент художественной формы, придающий прои … Википедия

Книги

  • Дискретная математика. Основные теоретико-множественные конструкции. Часть VI , А. И. Широков. Пособие представляет собой VI часть раздела «Основные теоретикомножественные конструкции дискретной математики». В гл. XI рассматриваются следующие понятия: композиции функций (§1); функции,…

В научной среде широко известна шутка на эту тему "нелинейность" сравнивается с "не-слоном" - все создания, кроме "слонов", являются "не-слонами". Сходство заключается в том, что большинство систем и явлений в окружающем нас мире нелинейны, за малым исключением. Вопреки этому, в школе нас учат "линейному" мышлению, что очень плохо, с точки зрения нашей готовности к восприятию всепроникающей нелинейности Вселенной, будь то ее физические, биологические, психологические или социальные аспекты. Нелинейность концентрирует в себе одну из основных сложностей познания окружающего мира поскольку следствия, в общей своей массе, не пропорциональны причинам, две причины, при взаимодействии, не аддитивны, то есть следствия являются более сложными, чем простая суперпозиция, функциями причин. То есть, результат, получающийся в результате присутствия и воздействия двух причин, действующих одновременно, не является суммой результатов, полученных в присутствии каждой из причин в отдельности, при отсутствии другой причины.  

Определение 9. Ее in на некотором промежутке X определена функция г-ф(лг) с множеством значений Z и на множестве Z определена функция у =/(z), то функция у Лсложной функцией от х (или суперпозицией функции), а переменная z - промежуточной переменной сложной функции.  

Контроллинг можно представить как суперпозицию трех классических управленческих функций - учета, контроля и анализа (ретроспективного) . Контроллинг как интегрированная функция управления делает возможным не только подготовку решения, но и обеспечение контроля его выполнения с помощью соответствующих управленческих инструментов.  

Как известно /50/, любую временную функцию можно представить как суперпозицию (набор) простых гармоничных функций с разным периодом, амплитудой и фазой. В общем случае P(t) = f(t),  

Переходная или импульсная характеристики определяются экспериментально. При их использовании по методу суперпозиции осуществляется сначала разложение выбранной модели входного воздействия на элементарные" функции времени, а затем суммирование откликов на них. Последнюю операцию называют иногда свертыванием, а интегралы в выражениях (24). . . (29) - интегралами свертки. Из них выбирается тот, у которого проще подынтегральная функция.  

Эта теорема сводит задачу на условный экстремум к суперпозиции задач на безусловный экстремум. В самом деле, определим функцию R (g)  

Суперпозиция ((>(f(x)), где у(у) - неубывающая выпуклая функция одного переменного, /(х) - выпуклая функция , является выпуклой функцией.  

Пример 3.28. Вернемся к примеру 3.27. На рис. 3.24 показан в виде штрих-пунктирной кривой результат суперпозиции двух функций принадлежности , соответствующих тем квантификаторам, которые имеются в этом примере. С помощью уровня отсечки со значением 0,7 получены нечеткие интервалы на оси абсцисс. Теперь мы можем сказать, что диспетчер должен ожидать изменения плана  

Другой способ определения функции F, отличный от способа суперпозиции, состоит в том, что при применении какого-либо квантификатора к другому квантификатору происходит некое монотонное преобразование исходной функции принадлежности , сводящееся к растяжению и сдвигу максимума функции в ту или другую сторону.  

Пример 3.29. На рис. 3.25 показаны два результата, полученные с помощью суперпозиции и сдвига с растяжением, для случая, когда ХА и X соответствуют квантификатору часто. Разница состоит, по-видимому, в том, что суперпозиция вычленяет в функции принадлежности часто те значения, которые часто встречаются. В случае же сдвига и растяжения мы можем интерпретировать результат как появление нового квантификатора со значением часто-часто , который можно при желании аппроксимировать, например, значением очень часто.  

Покажите, что суперпозиция строго возрастающей функции и функции полезности , представляющей некоторое отношение предпочтения >, также является функцией полезности , представляющей это отношение предпочтения. Какие из нижеприведенных функций могут выступать в качестве такого преобразования  

Первое из соотношений (2) представляет собой не что иное, как запись правила, согласно которому каждой функции F(x), принадлежащей семейству монотонно неубывающих абсолютно непрерывных функций , ставится в соответствие одна и только одна непрерывная функция w(j). Это правило линейно , т.е. для него верен принцип суперпозиции  

Доказательство. Если отображение F непрерывно, функция М0 непрерывна как суперпозиция непрерывных функций . Чтобы доказать вторую часть утверждения, рассмотрим функцию  

Сложные е функции (суперпозиции)  

Метод функциональных преобразований предполагает также использование эвристического подхода. Например, использование логарифмических преобразований в качестве операторов В и С приводит к информационным критериям построения идентифицируемых моделей и использованию мощного инструмента теории информации . Пусть оператор В представляет собой суперпозицию операторов умножения на функцию,(.) и сдвига на функцию К0(), оператор С - оператор  

Здесь будут в общих чертах приведены результаты решения ряда вариационных задач (1)-(3). Они решались методом последовательной линеаризации (19-21) еще в 1962-1963 гг., когда технология метода только начинала складываться и проходила проверку. Поэтому мы остановимся лишь на некоторых деталях. Прежде всего заметим, что функции С и С2 были заданы достаточно сложными выражениями, являющимися суперпозицией вспомогательных функций, в том числе и заданных таблично. Поэтому при решении сопряженной системы ф=-fxиспользованием функций, заданных таблично. Обычно подобные таблицы содержат небольшое число значений для набора узлов в области изменения независимого аргумента, а между ними функция интерполируется линейно, так как применение более точных методов интерполяции не оправдано ввиду неточности самих табличных значений (как правило, таблицами задаются функциональные зависимости экспериментального характера). Однако для наших целей нужны дифференцируемые функции / (х, и), поэтому следует предпочесть гладкие методы восполнения таблично заданной функции (например, с помощью сплайнов).  

Пусть теперь (ДА и (д - произвольные функции, соответствующие каким-то значениям квантификаторов частоты. На рис. 3.23 показаны две одногорбые кривые, отвечающие этим функциям. Результат их суперпозиции - двугорбая кривая, показанная штриховой линией. Каков ее смысл Если, например, (ДА есть редко, а (д - часто,  

Преимущество такого способа определения F состоит в том, что при монотонных преобразованиях вид функции принадлежности меняется не кардинально. Ее унимодальность или монотонность сохраняется, и переход от нового вида функции (2.16) имеют трапециевидную форму, то и линейная суперпозиция (2.15) является трапециевидным нечетким числом (что легко доказывается при использовании сегментного правила вычислений ). И можно свести операции с функциями принадлежности к операциям с их вершинами. Если обозначить трапециевидное число (2.16) как (аь а2, аз, а4), где а соответствуют абсциссам вершин трапеции, то выполняется  

Познакомимся с понятием суперпозиции (или наложения) функций, которая состоит в том, что вместо аргумента данной функции подставляется некоторая функция от другого аргумента. Например, суперпозиция функций даёт функцию аналогично получаются и функции

В общем виде, предположим, что функция определена в некоторой области а функция определена в области причем значения ее все содержатся в области Тогда переменная z, как говорят, через посредство у, и сама является функцией от

По заданному из сначала находят соответствующее ему (по правилу, характеризуемому знаком значение у из У, а затем устанавливают соответствующее этому значению у (по правилу,

характеризуемому знаком значение его и считают соответствующим выбранному х. Полученная функция от функции или сложная функция и есть результат суперпозиции функций

Предположение, что значения функции не выходят за пределы той области У, в которой определена функция весьма существенно: если его опустить, то может получиться и нелепость. Например, полагая мы можем рассматривать лишь такие значения х, для которых ибо иначе выражение не имело бы смысла.

Мы считаем полезным здесь же подчеркнуть, что характеристика функции, как сложной, связана не с природой функциональной зависимости z от х, а лишь со способом задания этой зависимости. Например, пусть для у в для Тогда

Здесь функция оказалась заданной в виде сложной функции.

Теперь, когда полностью выяснено понятие суперпозиции функций, мы можем точно охарактеризовать простейший из тех классов функций, которые изучаются в анализе: это, прежде всего, перечисленные выше элементарные функции а затем - все те, которые из них получаются с помощью четырёх арифметических действий и суперпозиций, последовательно применённых конечное число раз. Про них говорят, что они выражаются через элементарные в конечном виде; иногда их все также называют элементарными.

Впоследствии, овладев более сложным аналитическим аппаратом (бесконечные ряды, интегралы), мы познакомимся и с другими функциями, также играющими важную роль в анализе, но уже выходящими за пределы класса элементарных функций.


Поделитесь с друзьями или сохраните для себя:

Загрузка...